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ABSTRACT 

 

NONLINEAR VIBRATION OF ROTOR-BEARING SYSTEM WITH 

SQUEEZE FILM DAMPING 

 

 

 

Sevencan, Furkan 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. Ender Ciğeroğlu 

Co-Supervisor: Assist. Prof. Dr. Özgür Uğraş Baran 

 

 

August 2022, 70 pages 

 

 

Squeeze film damper is a widely used nonlinear element in rotor-bearing systems. 

The dynamic behavior of the rotor-bearing system supported by the squeeze film 

damper must be investigated for proper design and analysis. Nonlinear vibration 

response of rotor systems supported by squeeze film damper due to unbalance is 

investigated. The system rotordynamic model is developed using 1D Timoshenko 

beam elements. Three types of modeling are performed for SFD. The nonlinear SFD 

models are based on the analytical solution of the Reynolds equation for open ends 

short length SFDs and the numerical solution of the 3D Reynolds equation of flow 

model by using the Finite Difference Method (FDM) for open ends SFDs by 

considering oil inertia effects. As FDM is computationally cost, a neural network 

study is performed for various parameters related to SFD. Finally, Neural Network 

simulation is performed using data set obtained from the 3D Reynolds equation of 

flow model using the Finite Difference Method (FDM) for open ends SFDs. Rotor-

bearing system and SFD are incorporated, and a nonlinear equation of motion is 

obtained. Harmonic Balance Method (HBM) takes place to represent the resulting 
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nonlinear differential equations of motion as a set of nonlinear algebraic equations. 

Newton Method with arc-length continuation is utilized as the solution method for 

the set of nonlinear algebraic equations obtained. Case studies are performed to 

investigate the effects of SFD parameters and compare SFD modeling approaches in 

accuracy and computational time.   

Keywords: Rotordynamic, Squeeze Film Damper, Nonlinear Vibrations  
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ÖZ 

 

SIKIŞAN FİLM SÖNÜMÜ BARINDIRAN ROTOR-RULMAN 

SİSTEMLERİN DOĞRUSAL OLMAYAN TİTREŞİMİ 

 

 

Sevencan, Furkan 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ender Ciğeroğlu 

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi Özgür Uğraş Baran 

 

 

Ağustos 2022, 70 sayfa 

 

Sıkışan film sönümü , rotor-yatak sistemlerinde yaygın olarak kullanılan doğrusal 

olmayan bir elemandır ve sıkışan film sönümü barındıran rotor-yatak sistemlerinin 

dinamik davranışı uygun tasarım ve analizler için dikkatlice incelenmelidir. Sıkışan 

film sönümü ile desteklenen dönen sistemlerinin balanssızlıktan kaynaklanan 

doğrusal olmayan titreşim tepkisi incelenmiştir. Sistemin rotor dinamik modeli, 1 

boyutlu Timoshenko kiriş elemanları kullanılarak geliştirilmiştir. SFD için üç tip 

modelleme yapılır. Doğrusal olmayan SFD modelleri, sızdırmazlık elemanı 

barındırmayan kısa uzunluklu SFD için Reynolds denkleminin analitik çözümüyle  

ve sızdırmazlık elemanı barındırmayan SFD için yağın kütle etkisi de dahil edilerek 

Sonlu Fark Metodu (FDM) kullanılarak 3 boyutlu Reynolds akış denkleminin sayısal 

çözümüyle elde edilmiştir. FDM kullanılan çözüm yavaş olduğu için SFD ile ilgili 

çeşitli parametreler için bir sinir ağı çalışması yapılmıştır. Son olarak, açık uçlu SFD 

için Sonlu Fark Metodu (FDM) kullanılarak akış modelinin 3B Reynolds 

denkleminden elde edilen veri seti kullanılarak Sinir Ağı simülasyonu 

gerçekleştirilmiştir. Rotor-yatak sistemi modeli ve SFD modeli bir araya getirilerek 

doğrusal olmayan hareket denklemi elde edilmiştir. Harmonik Denge Yöntemi 

(HBM), elde edilen doğrusal olmayan diferansiyel hareket denklemlerini bir dizi 



 

 

viii 

 

doğrusal olmayan cebirsel denklem olarak temsil etmek için kullanılmıştır. Elde 

edilen doğrusal olmayan denklemler için çözüm yöntemi olarak yay uzunluğu 

sürdürme yöntemi ile Newton Metodu kullanılmıştır. SFD parametrelerinin etkilerini 

araştırmak ve SFD modelleme yaklaşımlarını doğruluk ve hesaplama süresi 

açısından karşılaştırmak için çeşitli analiz çalışmaları gerçekleştirilmiştir. 

 

Anahtar Kelimeler: Rotordinamiği , Sıkışan Film Sönümü , Doğrusal Olmayan 

Titreşim 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Problem Statement  

The most common Rotordynamic problems are excessive steady state vibration 

levels and rotor instabilities [1,2]. One of the most critical solutions is introducing 

external damping to the system. In rotor-bearing systems, the external damping 

source is a Squeeze Film Damper (SFD), known as one type of journal bearing. 

Squeeze Film Dampers have been commonly used in rotor-bearing systems such as 

gas turbines, aero engines, and high-speed machinery to reduce vibration levels and 

assist the stability of rotor-bearing systems [3,4]. Rotordynamic evaluation is 

necessary to assess the dynamic behavior of rotor-bearing systems, so adequate 

modeling for rotordynamic behavior and SFD is essential for rotor-bearing systems, 

which include SFD. The force generated by SFD depends on displacement at the 

SFD location, which makes the system nonlinear in the aspect of mechanical 

vibrations. Nonlinear vibration of a rotor-bearing system supported by SFD under 

unbalance excitation, which is the primary source of external forcing for rotating 

systems, can be investigated by developing a rotordynamic model for the rotor-

bearing system and flow model for squeeze film damper (SFD). Incorporating these 

models with a nonlinear solver is to be achieved for proper design and analysis of 

the rotor bearing system supported by SFD.  

Analytical solutions for SFD under some fundamental assumptions and simplified 

rotor bearing system solutions such as rigid rotor assumption on flexible bearings 

are available in the literature. Although they give an idea about the effects of SFD 

and the dynamic behavior of the systems, their results are limited by their 
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fundamental assumptions. A more complex and accurate solution for the problem is 

desired. Although the Computational Fluid Dynamics (CFD) solution for SFD and 

many degrees of freedom (DOFs) models for rotor-bearing systems can be used for 

the problem, it is costly regarding computational time. A more computationally 

efficient solution is desired for the problem. In nonlinear vibration problems, the 

steady-state response solution in the frequency domain is faster than the time domain 

solution. 1D FE-based rotordynamic model is developed to model rotor-bearing 

system, and flow model is developed to represent squeeze film damper pressure 

distribution using 1D Reynolds equation and finite difference method (FDM). 

Steady-state nonlinear vibration of the rotor-bearing system supported by SFD is 

studied by assembling these rotordynamic and flow models and solved with 

nonlinear methods.  

 

1.2 Literature Survey 

Squeeze Film Dampers are lubricated elements commonly used in rotor-bearing 

systems to provide damping and structural isolation, reduce vibration levels due to 

unbalance excitation and increase the stability margins [5]. Squeeze film damper 

(SFD) consists of oil film, which creates energy dissipation, stiffness, and fluid 

inertia. The schematic view of the SFD is given in Figure 1.1. The annular oil film 

is filled between the journal on the outer bearing race and housing on the stationary 

components. Oil film's inner and outer race does not spin with the spin of the shaft 

by means of anti-rotation pin usage, which differs from squeeze film damper from 

journal bearing. Its working principle and usage resemble journal bearing; however, 

its inner race does not spin. The journal and housing have almost the same diameter; 

the oil film clearance is very small. Dynamic forces acting on the system lead to 

journal movement, then hydrodynamic squeeze film pressure is exerted due to oil 

film displacement. 
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The generated pressure distribution acts on the system as reaction forces, attenuating 

the transmitted force and reducing the vibration amplitudes. Therefore, SFD comes 

up with damping due to viscous dissipation force and mass contribution due to the 

fluid inertia effects. Moreover, SFD does not create direct stiffness; it may create 

cross-coupled damping depending on the cavitation on the oil film. The centering 

spring mechanism achieves desired motion capability of an oil film. In most aircraft 

engines, SFD is used with a flexible centering mechanism such as a squirrel cage, 

which provides soft support and centers the journal's motion. As the damping 

performance of the SFD depends on the fluid displacement of the oil film, desired 

centering spring element is designed and utilized. Squeeze film damper arrangement 

with centering spring mechanism (squirrel cage) is given in Figure 1.2 [3].  

 

Figure 1.1: Squeeze Film Damper Configurations a) SFD with central feed groove 

b.) SFD with end groove and seals [5] 



 

 

4 

 

Figure 1.2: SFD arrangement with Squirrel Cage [3] 

Because of the risk of instability due to fluid film bearings, journal bearings are not 

used in most aircraft engines. Short-length SFD is generally preferred in aircraft 

engines due to low weight and small space requirements in aero engines. Squeeze 

Film Damper's geometrical parameters, such as length of the oil film, the diameter 

of the damper and clearance of the oil film, and lubrication properties such as 

viscosity and density of used oil, are the effects of the main parameters on SFD 

performance. Furthermore, the type of SFD configuration, such as end seal usage, 

supply & discharge conditions, the effect of lubricant cavitation, and the effect of 

fluid inertia, are essential considerations for the performance of SFD. 

Cooper conducted one of the pioneer studies about SFD [6]. He experimentally 

investigated SFD performance; this experimental study's result shows why it is used 
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in most turboshaft and turbojet engines. Three different bearing configuration is 

compared in the study at low speeds. He observed small-sized, intermediate-sized, 

and large-sized orbits, and  White [7] continued the investigation. White reveals that 

the intermediate-sized orbit is unstable, so the motion jumps from one to another. 

The jump phenomenon is observed due to the nonlinearity of squeeze film force. 

One of the most critical quantitative results of White's study is that radial clearance 

of the damper shall be at least 2.3 times larger than the imbalance eccentricity exerted 

on the damper to keep the small-sized inverted orbit motion.  

Zeidan et al. [8] provide good insight to the researchers about SFD design and its 

application in jet engines. They mentioned the nonlinearity of SFD and the jump 

phenomenon and summarized the effects of end seal usage, feeding oil into oil film, 

fluid inertia, and cavitation effects. Arauz and San Andres [9] conducted an 

experimental study for SFD with a circumferential feed groove. The study shows 

that feeding grooves contribute to Squeeze Film Damper's damping capability. Arauz 

and San Andres [10] compared piston ring sealed SFD and open-end SFD 

configurations and presented the measurements for forces generated by SFDs. They 

found that even if sealed SFD oil's temperature increased, the damping capacity of 

sealed SFD is higher than open-ended SFD configuration. San Andres and Vance 

[11] have studied the effects of fluid inertia on the performance of SFD. The study 

shows that fluid inertia effects on the SFD performance cannot be disregarded under 

certain operating conditions. Reynolds number is the most influential parameter on 

the relevance of the fluid inertia of the lubricant. Cavitation on the oil film may be 

occurred due to insufficient external pressurization or/and excessive leakage on the 

end seals. Cavitation effects and their theoretical modeling has been studied by 

plenty of researchers. The experimental study was conducted by Zeidan [12], and it 

is observed that two types of cavitation (vapor and gaseous). The results reveal that 

gaseous cavitation highly diminishes the damping capability of the oil film region in 

SFD, and cavitation distribution is more than half of a circle.  

The performance of Squeeze Film Damper is mainly related to damper design 

parameters, operating conditions of the damper, and acting unbalance loading on the 
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damper, so SFD effects on rotordynamic behavior of rotor-bearing systems have 

been studied for a long time. Force coefficients of SFD can be obtained by solving 

related Navier Stokes Equation or Reynold equation analytically. The second 

solution method is limited by some assumptions. Gunter [3] came up with force 

coefficients with the circular center orbit (CCO) assumed motion for the central 

groove with an open end. San Andres and Vance [13] show force coefficients with 

off-centered orbit motion types for open-ended and long-bearing assumptions, 

including fluid inertia effects. Moreover, approximated coefficients for finite-length 

bearing are concluded by employing correlation factors on long damper 

formulations. The theoretical force coefficients of SFD, stiffness, and damping 

coefficients are summarized by Vance [1] for open-ended SFD under the 

assumptions of short/long bearing and cavitated / uncavitated. San Andres [14] 

conducted an experimental study to compare the theoretical formulation of short-

length assumed force coefficients. Fluid film forces are measured experimentally for 

fully submerged open-end squeeze film dampers with rotor speed up to 5000 cpm 

and low pressures. The experimental study, such as journal orbit motion, is 30-50 

percent of damper clearance. The results show a good correlation for fully 

submerged open-end SFD up to whirl frequency to 524 rad/s and low supply 

pressure. It is also observed that the formulation for half film cavitation agrees well 

with the experiments at higher whirl frequencies and no oil cavitation agrees well 

with the experiments at lower whirl frequencies.  

The incorporation of SFD in rotordynamic systems is investigated for different 

rotordynamic models, such as rigid rotor assumption, simple, flexible rotors, and 

complex multi-mass flexible rotors. In the rigid rotor modeling approach, the support 

is highly flexible with respect to the shaft, so the shaft's flexibility is not considered. 

Taylor et al. [15,16] investigated steady–state dynamic behavior of rigid rotors on 

Squeeze Film dampers. Mohan and Hahn [17] studied theoretically on a rigid rotor 

supported by a short SFD, and the π-film cavitation model was assumed as the 

cavitation type. The motion type of the SFD journal is taken as CCO, and the effect 

of SFD parameters and unbalance loadings on the response is investigated. Hahn 
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[18] modeled SFD using short bearing assumption and Warner approximation to 

determine the critical unbalance for the rigid rotor. Cookson and Kossa [19] studied 

the off-centered rigid rotor's transient response and different SFD parameters. SFD 

with centering spring and without centering spring effects on steady-state response 

are investigated. The rotor's mass is lumped at the middle of the rotor, or the mass is 

shared by bearing centers and rotor center. These kinds of rotors are called simple, 

flexible rotors, such as Jeffcott Rotors. Rabinowitz and Hahn [20,21] conducted a 

theoretical study on the steady-state response of a simple, flexible rotor supported by 

unpressurized short-length SFD, which carries out CCO motion, and Routh-Hurwitz 

criteria are used to analyze the stability of the system. Zhou [22,23] shows that under 

high unbalance loading SFD supported flexible rotor may experience bistable jump 

and chaotic motion. Inayat-Hussain et al. [24,25] performed a bifurcation analysis of 

a simple, flexible rotor with SFD and the effects of SFD design parameters and 

operational conditions on the margin speed for bifurcation. FE-based rotordynamic 

models give more accurate results than rigid rotor or simple, flexible rotor modeling. 

Modeling the multi-mass rotor-bearing system is essential for investigating the 

dynamic behavior of rotating systems. Nelson studied a multi-degree of freedom 

rotor-bearing system model using the Timoshenko beam element [26]. Genta [27] 

worked on advanced rotordynamic finite element modeling, including gyroscopic 

effects and reduction techniques. Multi-mass flexible rotors incorporated with SFD 

are studied in the literature. Nelson [28] studied an iterative solver for a flexible 

rotor-bearing system supported by a Squeeze film damper. The modified secant root 

finding method is developed to solve damper eccentricity and obtain force 

coefficients for every operating speed. McLean and Hahn [29] studied the forced 

response of flexible rotor-bearing systems supported by SFDs due to unbalance 

excitation. The solution method for nonlinear equations is significant in the aspect 

of computational time. Bonello [30] suggested the usage of an improved receptance 

harmonic balance method (RHBM) to the solution of the nonlinear vibration 

problem.  
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The studies mainly focus on the modeling approach for SFD as analytical solutions 

of the related fluid equation under some assumptions and ignore the inertia effects 

of the oil film. Another modeling approach for SFD is the Finite Difference Method 

(FDM) which is a more complex modeling of Squeeze film dampers. The finite 

length of SFD, effects of end sealing, effects of feeding and discharging, and 

cavitation types can be included without fundamental assumptions for the numerical 

solution of 2D pressure distribution of SFD. Lund [31] and Tecza [32] obtained two-

dimensional pressure distribution by utilizing the finite difference method (FDM) 

and conducted an experimental study to analyze the effects of oil holes, oil grooves, 

and fluid inertia on damping performance. San Andres [33] studied the effects of 

fluid inertia by using FDM on the synchronous response of flexible rotors supported 

by SFD. Results indicate that rotor amplitude and transmitted force significantly 

decreased while the Reynolds number increased. Hamzehlouia et al. [34-36] solved 

the 2D Reynolds equation with the FDM method for open-ended SFD, which 

executes CCO motion and considers fluid inertia effects by the first-order pressure 

perturbation method. Reynolds number, eccentricity ratio, and length over diameter 

parameters are investigated on the pressure distribution and dynamic response of 

multi-mass flexible rotor supported by SFD. Extensive experimental studies are 

conducted about different effects, such as fluid inertia, lubricant cavitation, air 

ingestion pressurization, and sealing, summarized by San Andres et al. [37]. Feng 

He et al. [38] used Harmonic Balance Method (HBM) to obtain a set of nonlinear 

algebraic equations from the differential equation of motion for the forced response 

of a 1D finite element-based rotor-bearing system supported by short length SFD 

including fluid inertia effects. It is observed that The HBM is computationally 5-12 

times faster than traditional transient methods such as Runge-Kutta, with similar 

results. Responses are studied for varying unbalance loadings, the location of 

unbalance loadings, and varying stiffness of springs connected with the dampers. 

Furthermore, the predictor-corrector solution method is utilized. Chen et al. [39] 

analyzed the rotor-bearing system supported by SFD, which is modeled as a short-

length bearing assumption without considering fluid inertia under the base 
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excitation. They showed the nonlinear vibration behavior for different unbalance 

loading conditions and investigated the viscosity of used oils. Later Chen et al. [40] 

presented the same system by considering fluid inertia effects on the SFD. The paper 

used the FDM solution for open-ended SFD and compared only viscous effects 

acting nonlinear response, and fluid inertia effect included nonlinear response. The 

results show that fluid inertia effect inclusion in Reynold oil film equation increases 

viscous dissipation's damping capability on vibration responses.  

Harmonic Balance Method (HBM) is widely used for nonlinear algebraic equations, 

and the Newtons Method with arc-length continuation is utilized as a solver type for 

nonlinear vibration problems. Von Groll and Ewins [41] uses the indicated 

procedures for nonlinear vibration problems about rotor stator contact. Furthermore, 

Receptance Method is used to significantly reduce the nonlinear algebraic equation 

numbers on the MDOF systems [42,43]. 

1.3 Motivation and Scope 

As SFD is not an on-shelf element, it should be designed for specific rotor-bearing 

systems. Nonlinear vibration of the rotor-bearing system supported by SFD should 

be investigated for proper design and analysis. In literature, it is seen that some 

methods are suggested to analyze the dynamics behavior of rotor-bearing systems 

supported by SFD. Most of them consider analytical solutions for SFD, which are 

available only for limited conditions such as pressure gradient is negligible either 

circumferentially or axially. Furthermore, oil inertia effects on vibration responses 

are primarily neglected in these studies, which may change responses drastically. 3D 

pressure distribution solution considering these effects is utilized for rotor-bearing 

systems supported by SFD; however, they are most probably computationally cost.  

In this study, the nonlinear vibration of the rotor-bearing system supported by SFD 

due to unbalance excitation is investigated. An advanced rotordynamic model is 

established for modeling rotor-bearing systems. Firstly, SFD is modeled with an 
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analytical solution of the Reynolds equation, and the effects of SFD and the amount 

of unbalance load are investigated. Secondly, the 3D pressure distribution is solved 

using FDM to consider oil inertia effects and obtain no limitations for the SFD 

length-to-diameter ratio. Force coefficients are obtained by numerical integration of 

pressure distributions. Lastly, using the stated FDM solution, a neural network study 

is performed to model SFD for a wide range of non-dimensional parametric inputs 

and generated force coefficient outputs. The analysis leads to getting as accurate as 

FDM solution and computationally efficient with respect to FDM. Receptance 

Method (RM) is used to reduce rotor-bearing system DoFs and reduce nonlinear 

differential equations. HBM is used to obtain nonlinear algebraic equations 

representing steady-state vibrations, and Newton's method with arc-length 

continuation is used as the solution method. A small turbojet engine, given in [27], 

is used for the case studies. Various parametric changes are applied, and the results 

are compared in the aspect of accuracy and computational time. 
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CHAPTER 2  

2 MATHEMATICAL MODELING  

In this chapter, mathematical modeling of the rotordynamic model and SFD model 

are explained. Rotor-bearing system modeled using FEM with linear 1D 

Timoshenko beam elements, including gyroscopic effects. SFD is modeled in 3 

different ways. The first is the SFD model with the analytical solution of the 

Reynolds Equation of short-length SFD. Secondly, SFD model with Finite 

Difference Method (FDM) solution of 3D Reynolds Equation of SFD. Lastly, SFD 

model with Neural Network simulation by utilizing FDM solution of 3D Reynolds 

Equation of SFD.  

2.1 Rotordynamic Model with FEM 

Rotordynamic is the branch of applied mechanics concerned with the behavior of 

dynamics of rotating systems. Natural frequency changes with the spin velocity of 

the rotor system due to the presence of gyroscopic effects. The modes that increase 

with the spin speed are called forward whirling modes, and the modes that decrease 

with speed are called backward whirling modes.  

Finite Element Modeling (FEM) is commonly used to represent the rotor-bearing 

system model. FEM is implemented to model rotor-bearing components such as 

shafts, disks, linear bearing, and stiffness and damping of the bearing and support 

structure as simple mass, spring, and damper elements. Nelson and McVaugh [44] 

are one of the first developer FEM for rotordynamic analysis. Three dimensional 

(3D) linear beam elements are established by using 6-DOF (3 translational and 3 

rotational) for one side of the beam node and 6- DOF for the other side of the beam 
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element, and Euler-Bernoulli and Timoshenko beam formulations are used for finite 

element model of flexible elements. In lateral vibration investigation, 1 translational 

DOF related to the axial direction of the rotor and 1 rotational DOF associated with 

the torsional direction spin direction is ignored. Therefore, 8 DOF Timoshenko beam 

element is utilized in rotordynamic modeling.   

The rotor-bearing system, which consists of flexible shafts, disks, and bearings, is 

modeled based on a 1D finite element method. Timoshenko beam elements with 4 

degrees of freedom (DOF) per each node for lateral directions (x, y, θ𝑥, θ𝑦) are used 

for the flexible shaft. The components such as compressors, turbine disks, and blades 

are modeled as lumped masses, including diametral and polar mass moment inertia 

of the members as the shaft vibration is studied. Disks are considered rigid as local 

disk modes are not considered in the rotor dynamic model. Bearings are represented 

as linear springs and viscous damping elements between the bearing connection node 

and the ground.  

Stiffness, damping, and mass matrices are obtained for the rotor-bearing system. 

Additionally, gyroscopic effects must be included in rotor-bearing system modeling, 

so gyroscopic matrices are obtained. Entire system matrices derived and detailed 

information related to system matrices can be found [27]. The geometrical 

presentation of the beam element is given in Figure 2.1.  

 

Figure 2.1: Geometrical representation of beam element [27] 
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2.2 Squeeze Film Damper(SFD) Model  

Squeeze film damper (SFD) consists of oil film, which creates energy dissipation, 

stiffness, and fluid inertia. The schematic view of the SFD is given in figure #1. The 

oil film is filled between the journal and the housing. The journal does not spin due 

to the presence of an anti-rotation pin. The geometrical parameters of the SFD, such 

as length, diameter, and clearance, are shown in Figure 2.2. 

 

Figure 2.2: Schematic of SFD 

The forces due to SFD can be obtained by solving the pressure distribution on the 

SFD journal surfaces by utilizing the Reynolds equation as given [5]:  

3 3 ( )
( ) ( ) 12

h p h p h

R R z z t

       
 

      
 (2-1) 

Where h  is the dynamic film thickness p ,   and   are the pressure of the oil film, 

viscosity, and density of the oil, respectively.   is the circumferential direction in 

cylindrical coordinates and z  is the axial direction of the SFD. The dynamic film 

thickness h , can be defined as: 

 
 

cos( )h c e    (2-2) 

 
 
c is the radial clearance of the SFD and e  is the dynamic amplitude of the SFD.  
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The Reynolds equation can be solved in two ways. The first is the analytical solution, 

which requires simplifying the equation and solving pressure distribution in 1D. The 

second is the finite difference method (FDM) solution which solves the pressure 

distribution of the field in 2D. The model of SFD can be solved in 3D by utilizing 

the CFD method, which is out of the scope of this study.  

Fluid inertia effect inclusion of a version of the equation can be written as:  

3 3 2 2

2
( ) ( ) 12
h P h P h h h

R R z z t t

      
  

        
 

(2-3) 

A pressure distribution solution can be obtained by following the stated methods 

above. The forces generated due to the pressure distribution can be expressed as: 

2

0 0

( , ) cos( )

L

rF P z Rd dz



      
(2-4) 

2

0 0

( , )sin( )

L

tF P z Rd dz



      
(2-5) 

 

2.2.1 Analytical Solution of 1D Reynolds Equation 

An analytical solution of the equation is only available when the SFD can be assumed 

as a short-bearing assumption (SBA) or long-bearing assumption (LBA).  

The short bearing assumption (SBA) is considered when the length of the damper is 

relatively very short with respect to the diameter of the damper. For short-length 

SFDs (i.e., length to diameter ratio less than 0.5, L/D<0.5), the short bearing 

assumption states that the oil pressure gradient along the circumferential direction is 

negligible with respect to the pressure gradient along the axial direction. The 

Reynolds equation, by including the temporal fluid inertia term, is reduced as: 
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3 2 2

2
( ) 12
h P h h h

z z t t

    
 

     
 

( 2-6) 

The pressure distribution for the open-end boundary conditions gives: 

( ,0) ( , ) 0P P L     ( 2-7) 

The pressure distribution for open-ended short-length SFD can be written as:  

2

3

6
( , ) ( cos( ) sin( ))( )P z e e z Lz

h


        

( 2-8) 

The motion of the SFD journal is circular centered orbit (CCO) motion. For CCO, 

the radial velocity and tangential acceleration are zero. Therefore, the force 

generated by SFD in radial and tangential directions can be founded as:  

( )r rt t rr rF C V M A    ( 2-9) 

 t tt t tr rF C V M A    ( 2-10) 

Where,  ttC , rtC  , rrM  and trM  are direct tangential damping coefficient, cross-

coupled damping coefficient, direct radial mass coefficient, and cross-coupled mass 

coefficient, respectively. tV e   and 2
rA e    are tangential velocity and radial 

acceleration, respectively.  e  is the amplitude of the SFD journal motion. For the 

open ends short length SFD model with circular centered orbit (CCO) motion, force 

coefficients obtained by using π-film assumption (the extent of oil film extends over 

half in the circumferential direction) and 2π-film (No oil cavitation occurs) are listed 

in Table 2.1 [5]. 
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Table 2.1: Short bearing assumption force coefficients 

 π-film 2π-film 

 

ttC   

3

3
2 2

   

4 1

µ D L

c

  
 
 

 

 

 

3

3
2 2

   

2 1

µ D L

c

  
 
 

 

 

 

rtC   

3

2
2

   

4 1

µ D L

c

  
 
  

 

 

0  

 

rrM  

 

 
 

 

1
2 2

3 1
2 2

1
2 2 2

1 1   
1 2 1

24
1

D L

c

 
      

       
      

 

  
 

 

1
2 2

3 1
2 2

1
2 2 2

1 1   
1 1

12
2

1

D L

c

 
      

       
      

 

 

 

trM  

327    1 1
2 ln

140 1

D L

c

      
            

 
 

0  

 

Where, L  , D  and c  are length, journal diameter, and radial clearance of the SFD, 

respectively.  and   are effective density and viscosity of the lubricant oil. e c 

, is the ratio of orbit motion amplitude to clearance of the SFD, and it is referred as 

the eccentricity ratio. For no oil cavitation, i.e., 2π-film assumption, direct damping 

and mass coefficients ( ttC , rrM ) become twice the half film cavitation coefficients, 

and the cross-coupled damping and mass coefficients ( rtC , trM ) are null. The 

damping coefficients are proportional to the cube of length to clearance ratio and 

linearly proportional to the diameter of the damper. Mass coefficients are 

proportional to the cube of length and linearly proportional to the diameter ratio to 

the damper's clearance. Since the force coefficients given above depend upon the 

amplitude of the motion of the SFD journal, the generated forces by SFD are 

nonlinear. The mass and damping coefficients change with the amplitude of the 

motion of the SFD location.  
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2.2.2 Solution of 3D Reynolds Equation of SFD 

2.2.2.1 Oil Film Governing Equations  

The Squeeze Film Damper is assumed as finite length and open-ended, geometrical 

representation, journal motion, and its coordinate system are given in Figure 2.3. 

 

Figure 2.3. SFD geometrical presentation with the coordinate system 

3-dimensional conservation of mass (Continuity) equation and conversation of 

momentum equation Navier-Stokes equation of fluid boundaries can be expressed 

as: 

( ) 0V
x


  


 (2-11) 

 

2
. .( ) .

3

V
V V P V V g

t

    
             

   
 (2-12) 

 

Instantaneous pressure distribution can be solved by given equations. Simplification 

is performed with the following assumptions: 
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1. The body force terms are very small compared to the viscous, inertia, and 

pressure terms. 

2. The fluid is Newtonian, incompressible (constant density), iso-viscous 

(constant viscosity), and iso-thermal flow.  

Applying these assumptions and extending Eqs. (2-11) - (2-12)  yields the following 

equations.  

0
u v w

x y z

  
  

  
 

(2-13) 

2

2

u u u u P u
u v w

t x y z x y

      
       

      
 (2-14) 

2

2

v v v v P v
u v w

t x y z y y

      
       

      
 (2-15) 

2

2

w w w w P w
u v w

t x y z z y

      
       

      
 (2-16) 

 

Furthermore, thin oil film assumption is applied such as c << R. Therefore, the effect 

of curvature and variation of the pressure across the film is negligible, i.e. 0P
y

 


. 

Flow equations are normalized by introducing non-dimensional forms for related 

terms. It also determines the dependency of fluid inertia terms on the Reynolds 

number. Non-dimensional parameters can be given as: 

x
t

R
       , 

z

R
  ,

y

c
  , t   , 

 u
u

R



, v

v
c




, w
w

c



,   

2

2

Pc
P

R



, 

2

4

Fc
F

R



, 1 cos( )

h
H

c
     , 

2

Re
c




 

(2-17) 

The non-dimensional parameters expressed in Eq. (2-17) are inserted into Eqs. (2-13) 

- (2-16) as:  
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0
u v w  
  

  
 (2-18) 

2

2
Re

u u u u P u
u v w

      
      

      
 (2-19) 

2

2
Re

w w w w P w
u v w

      
      

      
 (2-20) 

Boundary conditions for dimensionless velocities are defined as: 

0, 0, 0 0

0, , 0

u v w

H
u v w H






   



    

 (2-21) 

Additionally, for open-ended SFD, boundary conditions for the pressure can be 

expressed as: 

- The pressure is periodic in the circumferential direction, i.e. 

( , ) ( 2 , )P P      . 

- At the axial ends of the damper, the pressure difference is equal to zero i.e. 

( , / ) ( , / ) 0P L D P L D      

- The static pressure is above the cavitation pressure, which is typically 

ambient.  

 

The flow velocity components and pressure distribution are expanded with first-

order perturbation, and the first order is approximated as a function of the Reynolds 

number: 

0 1Reu u u   (2-22) 

0 1Rev v v   (2-23) 

0 1Rew w w   (2-24) 

0 1ReP P P   (2-25) 

These equations indicate that velocity components and pressure distribution are split 

into terms that neglect inertia as zeroth order and inertial correction term as the first 

order. Substituting Eqs. (2-22) - (2-25) into Eqs. (2-18) - (2-20) yields: 
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0 0 01 1 1Re
u v wu v w      

      
      

 (2-26) 

22
0 0 0 0 0 01 1

2 2
Re

u u u u P uP u
u v w

       
        

        
 (2-27) 

22
0 0 0 0 0 01 1

2 2
Re

w w w w P wP w
u v w

       
        

        
 (2-28) 

According to only viscous continuity and momentum equations, the right-hand side 

of Eqs. (2-26) - (2-28) are equal to zero. Then, they can be expressed as:  

0 0 0 0
u v w  

  
  

 (2-29) 

2
0 0

2
0

P u 
  
 

 
(2-30) 

2
0 0

2
0

P w 
  
 

 
(2-31) 

Boundary conditions for velocity components in Eqs. (2-29) - (2-31) can be given 

as: 

0 0 0

0 0 0

0, 0, 0 0

0, , 0

u v w

H
u v w H






   



    

 
(2-32) 

Zeroth-order velocity components and pressure distribution can be calculated by 

integrating Eqs. (2-29) - (2-31) with boundary conditions given in Eq (2-32) :  

20
0

20
0

2 2 3 2 2

0 0 0
0 2 2

1
( , , ) ( )

2

1
( , , ) ( )

2

1
( , , )

2 3 2 2

P
u H

P
w H

P P P H
v H

    


    


  
  

   


  

 



 


       
        

       

 (2-33) 

The Reynolds equation can be written for viscous only pressure distribution: 
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3 30 0 12
P P H

H H
    

      
    

       
 (2-34) 

First-order perturbation equations can be expressed as: 

1 1 1 0
u v w  
  

  
 

(2-35) 

2
0 0 0 0 1 1

0 0 0 2

u u u u P u
u v w

     
     

     
 

(2-36) 

2
0 0 0 0 1 1

0 0 0 2

w w w w P w
u v w

     
     

     
 

(2-37) 

Boundary conditions for velocity components of first-order terms: 

1 1 1

1 1 1

0, 0, 0 0

0, 0, 0

u v w

u v w H





   


   
 (2-38) 

Viscous (zeroth order) velocity components given in Eq (2-33) are substituted into 

Eq. (2-36) and Eq. (2-37), then inertial (first order) velocity components can be 

expressed as: 
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   

    

    
        

     

     
          

        

    
     

     

 
 
 

 (2-39) 
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H
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  

      

    

   

    

    
        

     

     
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 (2-40) 
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Eq. (2-35) is integrated along the film thickness by applying boundary conditions of 

velocity components to eliminate radial velocity components: 

1 1

0 0

0

H H

u d w d 
 

    
    

    
   (2-41) 

Inertial (first order) pressure distribution is determined by substituting Eqs. (2-39) 

and (2-40) into Eq. (2-41) :  
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(2-42) 

 

Eq. (2-42)is a Reynolds-like equation for inertial (first order) pressure distribution. 

The Viscous (zeroth order) pressure field can be calculated from Eq.(2-34). The total 

oil film pressure field could be obtained using Eq.(2-25). Finally, dimensionless 

radial and tangential forces can be determined by integration of total pressure field 

over damper journal surface: 

2

1

/

/

cos( )
( , )

sin( )

L D

r

t L D

F
P d d

F






   




   
   

  
   (2-43) 

Where, 
1

 and 
2

 are the positive side of the pressure distribution. 

2.2.2.2 Oil Film Pressure Field Solution 

The Finite Difference Method (FDM) is utilized for the solution of the pressure field, 

and numerical integration of the pressure field is obtained to determine generated 

forces due to SFD. The usage of FDM is given in the following sections in detail. 
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2.2.2.2.1 Viscous(Zeroth Order) Pressure Distribution 

Zeroth order pressure distribution can be found first using Eq. (2-34), then viscous 

pressure distribution could be substituted into a first-order pressure distribution 

solution. Eq. (2-34) can be expanded as: 

2 2
2 3 30 0 0

2 2
3 12

P P PH H
H H H

    

      
     

       
 (2-44) 

 

Where partial derivate terms related to film thickness, H can be expressed assuming 

CCO motion by using the definition given in Eq. (2-17):  
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 (2-45) 

Partial differential terms related to pressure distribution can be expanded by means 

of FDM and expressed as: 
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After definitions of partial derivatives, Eq. (2-44) can be solved for zeroth order 

pressure grid [35]: 

   
 

1, 1, , 1 , 1

,

4 1 2 0 2 0 3 0 0

0

1 2 32 2
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   
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
 

 
(2-47) 

 

Where,  
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 (2-48) 

2.2.2.2.2 Inertial (First Order) Pressure Distribution  

First order pressure distribution can be solved by using Eq. (2-44), and it can be 

expanded as: 

2 2
3 2 31 1 1

1 22 2
3 12 ( , ) ( , )

P P PH H
H H H G G   

    

   
    

    
 (2-49) 

Where,  
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(2-51) 

 

Fourth ad higher partial differential terms are neglected, and the chain rule 

   
  

   
is used. Higher order finite differences and mixed derivatives are 

written as: 
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(2-52) 

 

After the definition of partial derivate representation in FDM, Eq. (2-49) can be 

solved for first order pressure grid [35]: 
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 (2-53) 

 

2.2.2.3 Oil Film Generated Force Solution 

Tangential and radial forces are obtained similarly as FDM, Eq. (2-44) can be 

expressed as: 
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Where M and N are the number of grid that divides θ and ζ coordinates, respectively. 

These determined non-dimensional tangential and radial forces are in the form given 

in Eq. (2-17).  

Dimensional radial and tangential forces are expressed as: 
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 (2-55) 

By assuming Circular Centered Orbit (CCO) motion assumption, the transformation 

of fluid film reaction forces into fixed inertial coordinates, i.e. {X, Y} can be obtained 

as: 

 
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,

,

r
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SFD eq

F
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c










 (2-56) 

Then,  

, , ,

, , ,

n x SFD eq SFD eq

n y SFD eq SFD eq

f K x C x

f K y C y

 

 
 (2-57) 

These forces are nonlinear forces generated by SFD in X and Y directions. 

2.2.3 Neural Network Simulation Model for SFD 

The solution of pressure distribution of SFD with FDM is accurate for the wide range 

of geometrical parameters of SFD and the wide range of used oil's fluid parameters. 

Furthermore, the inertia effect of oil can be included with the help of described first-

order perturbation solution of 3D flow equations. In nonlinear vibration problem, 
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plenty of generated nonlinear force solution which needs pressure distribution 

solution is required for iterations. However, the FDM solution of the pressure field 

is computationally cost. Therefore, the Neural Network simulation model is 

performed to obtain a simulation model for non-dimensional SFD parameters inputs 

and non-dimensional SFD generated forces outputs. Once the accurate network is 

developed, the simulation model can be efficiently used for various parameters of 

SFD in design and analysis processes. 

Plenty of parameter inputs for generated forces due to SFD are reduced using non-

dimensional parameters given in Eq. (2-17). Necessary inputs and outputs for neural 

network simulation of SFD and inputs' range for this study are shown in Table 2.2.  

Table 2.2 Network Simulation Inputs and Outputs 

 Inputs Description Range 

1 ε Eccentricity ratio (e/c) 0<ε <1 

2 L/D Length to Diameter ratio 0.05<L/D <1 

3 Re Reynolds Number 0<Re <15 

 Outputs   

1 𝐹𝑟̅ Non-dimensional Radial Force - 

2 𝐹𝑡̅ Non-dimensional Tangential Force - 

 

A typical neural network can be expressed with the number of layers, the number of 

neurons, transfer functions, and the training algorithm. A feedforward layered neural 

network is utilized to perform neural network simulation. After sensitivity studies, 

Hyperbolic-Tangent Sigmoid is used as a transfer function for layers except for the 

last layer. In the last layer, the linear transfer function is utilized. Minimizing MSE 

is an objective function by tuning bias vectors and weight matrices. The Levenberg-

Marquardt algorithm is used as a training function in neural network simulations. 

27000 input data set is run using FDM to obtain output data set for training and 

testing Neural Network simulations. Two different network study is performed using 
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MATLAB Neural Network toolbox with the different number of hidden layer and 

neurons for comparison purposes. A description of these neural network studies is 

given in Table 2.3.  

Table 2.3 Description of Networks 

Network 
Hidden 

Layer 
Neuron 

Performan

ce (MSE) 
Epoch Time (%) 

A 2 12-144 4.2E-04 150 30% 

B 3 12-144-12 3.2E-05 150 
%100 (13 

min) 
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CHAPTER 3  

3 NONLINEAR SOLUTION METHODS 

After obtaining the equation of motion for linear rotordynamic system and nonlinear 

forcing term generated by SFD with described mathematical modeling in the 

previous chapter, Harmonic Balance Method (HBM) is utilized for transforming 

nonlinear differential equations into nonlinear algebraic equations. Receptance 

Method (RM) is used to reduce the number of nonlinear equations. The final 

nonlinear equations are solved with Newton's Method with Arc-length Continuation. 

This chapter describes these methods for nonlinear vibrations of the rotor-bearing 

system supported by SFD.  

3.1 Harmonic Balance Method 

HBM is one of the most powerful and widely used method in the analysis of 

nonlinear vibratory systems to obtain a steady-state response in the frequency 

domain. The fundamental of the concept is that the response would be periodic if the 

system is excited periodically. Fourier series is utilized to represent both the 

excitation forcing term and the response. The primary goal of HBM is converting the 

nonlinear differential equations into nonlinear algebraic equations. As excitation and 

response terms are represented with Fourier series, time derivative terms in Equation 

of Motion (EOM) are converted into sine and cosine. Finally, each harmonic terms, 

such as sine and cosine, are equivalent separately in EOM.  

The equation of motion for a rotor-bearing system supported by nonlinear SFDs can 

be expressed as: 

( ) ( ) ( ) (1 ) ( ) ( , , ) ( )t t i t t t      nMx C G x K x f x x f  (3-1) 
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Where, M , G , C  and K , matrices are mass, gyroscopic, damping, and stiffness 

matrices of the rotor-bearing system, respectively.   is the loss factor for structural 

damping. nf is the nonlinear forcing vector due to SFDs. f  is the unbalance forcing 

vector acting on the rotor dynamic system and x  is the displacement vector.  

Since the steady-state response is interested, for periodic forcing ( )tx is assumed as 

periodic as well. Displacement response and nonlinear forcing vectors can be 

expressed as: 

0 , ,

1

( ) cos( ) sin( )

k

c p s p

p

t p t p t



    x x x x
 

(3-2) 
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( , , ) cos( ) sin( )
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c p s p

p

t p t p t



    n n n nf x x f f f  (3-3) 

Where ,c px and ,s px  are cosine and sine coefficients for the thp  harmonic 

displacement vector, respectively. ,  c pnf  and ,s pnf  are the cosine and sine 

coefficients for the thp  harmonic displacement vector, respectively. ω  is the base 

frequency showing the period, and all other frequencies given in the series are integer 

multiples of ω . Substituting Eq.(3-2) and Eq. (3-3) into Eq. (3-2) and applying HBM, 

nonlinear algebraic equations for the thp  harmonic can be obtained as follows: 

,

,
,

( ) ( , , )
c p

p p p
s p

t
 

   
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 

n

x
Z f x x f

x  
(3-4) 

 

Where the dynamic stiffness matrix  p Z  is expressed as:  
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A complete set of nonlinear algebraic equations for the rotordynamic system takes 

the following form:  

( , ) ( ) ( , , )t     nr x Z x f x x f 0  (3-6) 

Here,  

0 1( ) ( ( ), ( ),..., ( ))kdiag    Z Z Z Z  (3-7) 

0 ,1 ,1 , ,, , ,..., ,c s c k s k
 
 

T T T T T
x x x x x x  (3-8) 

,0 ,1 ,1 , ,, , ,..., ,c s c k s k
 
 

T T T T T
n n n n n nf f f f f f  (3-9) 

0 ,1 ,1 , ,, , ,..., ,c s c k s k
 
 

T T T T T
f f f f f f  (3-10) 

 

 ,r x  is the nonlinear equation vector, which is a function of  x  and  . In this 

work, single harmonic representation is used in the case studies, i.e., 1k   in Eqs. 

(3-7) - (3-10). 

3.2 Receptance Method 

In most rotordynamic systems, nonlinear elements connected to the Degree of 

Freedoms (DoFs) are much less than the total number of DoFs in the system. 

Reduction methods are found efficient for these types of problems. Receptance 

Method (RM), [42-43] can be utilized to separate linear DOFs and nonlinear DoFs, 

i.e., a nonlinear element connected DoFs, and solve the equations separately, which 

allows a significant reduction in the number of nonlinear equations. It provides 

easiness in the aspect of time and convergence of the solution. 

Single harmonic Steady-State response for Equation (3-1) can be written as: 

  nx H (f (x) - f) = 0  (3-11) 

Where H is Receptance matrix and given as: 
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2 1( (1 ) ( ) ( )( ))i i         H K M G - C  (3-12) 

 

The receptance matrix includes matrix inversion. Modal reduction techniques would 

be beneficial for large systems to avoid large matrix inversion. Hence receptance 

matrix can be obtained utilizing modal reduction techniques. However, in 

rotordynamic systems, the gyroscopic matrix is a skew-symmetric and frequency-

dependent matrix, so a quadratic eigenvalue problem solution is needed, which 

yields complex eigenvalue and eigenvector. Therefore, the eigenvalue problem is 

repeated for every frequency sweep. The equations are reordered such that nonlinear 

DoFs will be at the bottom, which means unknown forcing terms will be at the 

bottom. The equation of motion can be written as:   

0
               

                        

l ll ln l

n nl nn n n n

x H H 0 f
+ -

x H H f (x ) f
 (3-13) 

 

It is observed from equation (3-13) that the bottom side of the given equations in 

matrix form is to be solved nonlinearly first. The bottom side of the equation can be 

written as: 

 ( , ) 0
  

      
  

l

n n nn n n nl nn
n

f
r x x H f (x ) H H

f
 (3-14) 

 

Afterward, the displacement of linear DoFs will be solved with known nonlinear 

forcing and known nonlinear displacement vectors by using Eq. (3-13). This 

indicated separation shows that the number of nonlinear equations is twice the 

number of nonlinear DoFs as sine and cosine terms coefficients are solved 

separately. If the receptance method is not used, the number of nonlinear equations 

would be twice the number of total DoFs in the system. Therefore, the nonlinear 

equation vector given in Eq. (3-6) is reduced to expressed in Eq. (3-14). 
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3.3 Newton's Method With Arclength Continuation 

Newton's method is a widely used solution method for nonlinear vibratory systems. 

It uses jacobian matrices, the derivative of the equation with respect to an unknown 

vector. Moreover, in nonlinear systems, there may be more than one solution at a 

specific frequency, so the arc-length parameter should be included to follow the path 

even for turning points. Therefore, the described method is a nonlinear solution 

method with a path following.  

A nonlinear SFD forcing vector can be found by described methods above, and 

residual equation Eq. (3-14) is obtained. Newton's Method with arc-length 

continuation method is used to solve nonlinear algebraic equations, which are 

converted by HBM. A single step of Newton's Method with Arc-length Continuation 

can be expressed as follows: 

 

 
1

i
j

i i
j j

i
j

d d d



  
     

     
    

    

r r
r q

x
q q

q
x

 
(3-15) 

 

Here, r is the nonlinear equation vector which is expressed in Eq.(3-14), i is the 

iteration number, and j  is for the thj   solution point.  i i i
j j q x

T

    is the vector of 

unknowns. d is the arc length equation defined as:  

 

  2   i
j j jd s  T

q q q  (3-16) 

 

Where, 1j j j  q q q  and s  is the radius of the hypothetical sphere. The details of 

the solution procedure can be found in [41]. 
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CHAPTER 4  

4 CASE STUDIES  

4.1 Rotordynamic System 

The rotor of a small turbojet engine [27] given in Figure 4.1 is used for the numerical 

case study. The rotordynamic model is developed using 18 Timoshenko beam 

elements (19 nodes) supported by two bearings and contains one compressor disk 

and one turbine disk, modeled as lumped masses and inertias. All parameters of the 

model are given in Table 4.1 and  Table 4.2. 

The first two undamped critical speeds are obtained from Campbell Diagram, shown 

in Figure 4.2. Critical Speeds are found as 2511 rad/s and 2726 rad/s, similar to the 

results in [27]. As only the first two modes are a range of interest, these two modes 

are studied in the case study. Corresponding mode shapes of the first two critical 

speeds are shown in Figure 4.3. It is observed from mode shapes, 1st mode is the 

conical mode, and 2nd mode shape is the cylindrical mode. These mode shapes 

explain that 1st mode is affected by the gyroscopic effect more than 2nd mode, which 

is the observation of the Campbell Diagram. 

For unbalance response characteristic of the rotordynamic system, the loss factor 

is taken as 0.01. Different amount of unbalance mass is located at disk 1 (4th node), 

and nonlinear responses from disk locations are investigated in frequency response 

graphs. An SFD is connected to 1st support (6th node), and all geometrical and oil 

properties are given in Table 4.3. 
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Figure 4.1: Rotor of a small Turbojet engine FEM sketch 

 

Table 4.1: Shaft Properties 

Field. # 1 2 3 4 5 6 7 8 9 

𝐷 (𝑚𝑚) 12 16 16 60 8 8 13 14.5 14.5 

𝑙(𝑚𝑚) 6 9 13 10 6.5 3.5 18 17 17 

𝜌 (𝑘𝑔 𝑚3⁄ ) 7810 0 0 0 7810 

𝐸 (𝐺𝑃𝑎) 210 72 72 72 210 

Field. # 10 11 12 13 14 15 16 17 18 

𝐷 (𝑚𝑚) 14.5 13 8 8 20 10 60 60 10 

𝑙(𝑚𝑚) 17 18 3.5 5.5 2 3 3.8 3.7 8.5 

𝜌 (𝑘𝑔 𝑚3⁄ ) 7810 0 0 7810 

𝐸 (𝐺𝑃𝑎) 210 
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Table 4.2: Lumped Mass & Bearing Properties 

Mass # 1 2 

Node # 4 17 

𝑚(𝑘𝑔) 0.0721 0.0658 

𝐼𝑝𝑜𝑙𝑎𝑟(𝑘𝑔𝑚𝑚2) 20.26 20.99 

𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑟𝑎𝑙(𝑘𝑔𝑚𝑚2) 12.19 10.74 

Bearing # 1 2 

Node # 6 13 

𝑘𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝑀𝑁 𝑚⁄ ) 1 1 

𝑘𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑁𝑚 𝑟𝑎𝑑⁄ ) 0 0 

 

Table 4.3: SFD Properties 

SFD properties 

Connected Node 6 

Geometrical Parameters  

𝐷 (𝑚𝑚) 20 

𝑙(𝑚𝑚) 5 

𝑐(𝑚𝑚) 0.1 

Oil Parameters  

µ (𝑐𝑒𝑛𝑡𝑖𝑝𝑜𝑠𝑒) 5.1 

𝜌 (𝑘𝑔 𝑚3⁄ ) 1000 
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Figure 4.2. Campbell Diagram 

 

Figure 4.3. Mode Shapes 
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4.2 Nonlinear vibration response with the analytical solution of 1D Reynolds 

Equation of SFD 

Analytical solution of 1D Reynolds equation of SFD is incorporated with 

rotordynamic model, then effects of SFD parameters and amount of unbalance 

loading is studied.  

In the analysis, the frequency range covering the first two critical speeds is 

investigated. It can be clearly seen from Figure 4.4 that SFD significantly reduces 

the amplitudes of the vibration since it provides a nonlinear damping force. Because 

of the π-film oil cavitation, SFD also provides a stiffening effect and shifts the 

resonance frequency towards the right resulting in a hardening effect.  

 

Figure 4.4: Response of 4th Node 

The nonlinear response of the 4th node corresponding to the location of the first 

lumped mass is given in Figure 4.5 for half film cavitation and no oil cavitation. No 

cavitation reduces the peak vibration amplitudes, and no hardening behavior is 

observed due to the lack of cross-coupled damping term. Half film cavitation 

response shows that a hardening effect occurs, which is inherited from the presence 
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of cross-coupled coefficients of damping and inertia. Physically, sophisticated seal 

mechanisms at the SFD support are used to provide no cavitation operating 

conditions for the SFD; however, in reality, it may not be possible for all operating 

conditions. Therefore, cavitation models such as half film cavitation other than no 

cavitation model should be studied.   

The effect of the diameter of the SFD on the nonlinear forced responses of the 4th 

node is given in Figure 4.6. It is observed that the amplitude of the response decreases 

as the diameter of the SFD increases since the generated nonlinear dissipating force 

is proportional to the diameter of the SFD. Similarly, the shift in resonance frequency 

decreases slightly as the diameter increases. It should be noted that the main reason 

for the hardening effect is the cross-coupling terms of the SFD force, which reduces 

in this case.  

The effect of the length of the SFD on the forced response of the 4th node is presented 

in Figure 4.7. It is observed that the effect of length on the response is higher than 

the effect of the diameter as the damping capacity of SFD is proportional to the cube 

of the length. In contrast, it is linearly proportional to its diameter. Shorter lengths 

result in higher vibration amplitudes and a stiffening effect. It should be noted that 

the multiplication of diameter, length, and viscosity can be taken as a single 

parameter; however, they are investigated separately to assess their effect by 

changing them physically. 
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Figure 4.5: Response of 4th node for no cavitation and half film cavitation 

 

Figure 4.6: Response of 4th node for different SFD diameters 
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Figure 4.7: Response of 4th node for different SFD lengths 

The effect of the clearance on the forced response of the 4th node is given in Figure 

4.8. Results show that as the clearance value decreases, resonance amplitude 

decreases, and the frequency shifts increases. An interesting dynamic behavior is 

observed where the resonance amplitude of the second mode becomes higher than 

the amplitude without the SFD for a clearance value of 0.2 mm. Therefore, clearance 

is an essential parameter in the design of SFDs.  

The effect of clearance on the forced response of the 17th node, i.e., the location of 

the second lumped mass, is given in Figure 4.9. Similar to the first lumped mass 

location, response amplitude decreases as clearance decreases. Around the 2nd mode, 

a more significant shift is observed for the 17th node compared to the 4th node. The 

maximum response amplitude at the 2nd mode for 0.2 mm clearance is almost equal 

to the case without SFD. 
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Figure 4.8: Response of 4th node for different clearance values 

 

Figure 4.9: Response of 17th node for different clearance values 

Normalized forced responses for the 4th node for a different amount of unbalance are 

given in Figure 4.10. The amount of unbalance in the system may vary due to 

operation conditions, manufacturing tolerances, etc. The amount of unbalance 

loadings are given as percentages of the base unbalance loading case; for example, 
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%10 of unbalance is 72.1x10-3 g-mm. As the unbalance amount increases, the 

response amplitude of the 4th node decreases around the 1st mode. However, around 

the 2nd mode, the response of %50 unbalance cases are slightly higher than the %10 

unbalance cases. Resonance frequencies shift to higher frequencies as the amount of 

unbalance increases.  

The case study is repeated by applying the unbalance to the second lumped mass 

location, i.e., the 17th node. The results obtained are given in Figure 4.11. It is 

observed that as the unbalance increases, the response amplitude of the 17th node 

increases around the first mode and decreases around the 2nd mode. The frequency 

shift around the first mode is much higher than in the previous case. This is because 

SFD at the 6th node is away from the unbalance location, and as a result, it cannot 

decrease the vibration amplitude efficiently. 

 

Figure 4.10: Normalized response of 4th node for a different amount of unbalance 
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Figure 4.11: Normalized Response of 17th node for unbalance at 17th node for a 

different amount of unbalance 

4.3 Nonlinear Vibration Response with the solution of 3D Reynolds 

Equation of SFD 

4.3.1 Oil Film Pressure Field and Generated Force 

The oil film pressure field is solved with FDM described in the mathematical 

modeling section. Viscous only pressure and inertial pressure fields are obtained, 

then their combination gives total pressure. Integration of total pressure over the 

journal surface domain gives force coefficients generated by SFD. Used grid number 

is significant while solving pressure distribution and generated force. Although a 

larger mesh size for FDM gives high accuracy, computationally makes it slower. As 

Neural Network will be used, a mesh convergence study is performed, and a 

sufficient number of mesh is determined for the accuracy of pressure distributions.  

Comparison of non-dimensional pressure distribution over the journal surfaces for 

viscous only (zeroth order) and inertial (first order) terms are given for a specific 
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case in which L/D is equal to 0.25 and eccentricity ratio is equal to 0.3. Reynolds 

number is equal to 5 is taken. The particular case is chosen because it occurs in the 

numerical case study, one of the cases in [35]. The pressure fields are shown in 

Figure 4.12 - Figure 4.14. 

 

Figure 4.12: Viscous only pressure field 

 

Figure 4.13: Inertial pressure field 
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Figure 4.14: Total pressure field 

Although Pressure fields show that viscous only pressure field is dominant with 

respect to the inertial pressure field, the inertial pressure field is considerable. 

Especially for larger Reynolds number, the inertial pressure field is significant. On 

the other hand, the distribution of pressure fields over the circumferential direction 

shows a different behavior between viscous only and inertial pressure fields. Their 

peak locations are at different circumferential coordinates, which may considerably 

affect the summation of pressure fields.  

Viscous only and total pressure distributions with respect to the circumferential 

direction at the mid-plane of the SFD for different specific cases are studied. In 

specific cases, different Reynolds numbers are investigated. Firstly, L/D=0.25 and 

ε=0.1 case pressure distribution at SFD mid-plane is given in Figure 4.15. 

Reynolds Number changes effects the pressure distribution in the aspect of the 

amplitude of pressure and location of the peak pressure at a circumferential 

coordinate. Secondly, L/D=0.25 and ε=0.3 case pressure distribution at SFD mid-

plane is given in Figure 4.16. Lastly, L/D=0.25 and ε=0.5 case pressure distribution 

at SFD mid-plane is shown in Figure 4.17. 
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Figure 4.15: Pressure field at SFD mid-plane for L/D=0.25 and ε=0.1 

 

Figure 4.16: Pressure field at SFD mid-plane for L/D=0.25 and ε=0.3 
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Figure 4.17: Pressure field at SFD mid-plane for L/D=0.25 and ε=0.5 

It is observed from Figure 4.15 - Figure 4.17 pressure field is drastically affected by 

the eccentricity ratio. Pressure magnitude is increasing with the increase of 

eccentricity ratio, and also, generated force is increasing. Furthermore, phase shifting 

occurs with the increase of eccentricity ratio. Reynolds number increase is increasing 

pressure magnitude and shifting peak locations of pressure distribution. The pressure 

field for a small Reynolds number is approximately the same with viscous only 

pressure distribution. However, moderate and high Reynolds numbers significantly 

affect pressure distribution, which should be considered. Moreover, these figures 

show good agreement with the literature [35].  

The effect of the change of L/D ratio on pressure distribution is investigated for a 

specific case and given in Figure 4.18. The pressure magnitude increases with the 

increase of the L/D ratio. The relationship between L/D and pressure magnitude is 

not as linear as between eccentricity ratio and pressure magnitude.  
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Non-dimensional generated radial and tangential forces are given in Figure 4.19 and 

Figure 4.20 for different eccentricity ratios and Reynolds numbers at specific 

L/D=0.25.  

 

Figure 4.18: Pressure field at SFD mid-plane for Re=5 and ε=0.3 

 

Figure 4.19: Non-Dimensional tangential force 
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Figure 4.20: Non-Dimensional radial force 

It is observed from Figure 4.19 and Figure 4.20 non-dimensional tangential force 

magnitude is increasing with eccentricity ratio in the negative direction for all 

Reynolds numbers. A Higher Reynolds number gives a higher magnitude for 

tangential force in the negative direction. In radial force, magnitude increases with 

eccentricity ratio increase in the negative direction for fluid inertia effect excluded 

case (Re=0). When the Reynolds number is larger than zero, radial force gives 

positive results for a small eccentricity ratio depending on the Reynolds number. 

When a higher Reynolds number is applied, i.e., Re =15, it hits a peak around 0.4 

eccentricity ratio and turns negative values around 0.55 eccentricity ratio. It still gets 

a higher magnitude in the negative direction while the eccentricity ratio increases. 

While Reynolds number decreases, the positive portion of radial force with respect 

to eccentricity ratio decreases. Non-dimensional forces show slower changes and 

nearly linear behavior, up to ε = 0.4, which is also stated in [37]. However, these 

forces change drastically when the eccentricity ratio gets more significant. 

Furthermore, as expressed in Eq. (2-56), the radial force is related to stiffness, and 

tangential force is associated with viscous damping in the structural system by 

assuming the CCO motion type. Therefore, it can be concluded that the damping 
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capacity and stiffening effect increase while the eccentricity ratio increases, and the 

damping capacity increases while the Reynolds number increases. Reynolds number 

positively contributes to radial force, reducing stiffening effect and bi-stable rotor 

operation.  

Non-dimensional generated radial and tangential forces are given in Figure 4.21 for 

different length-to-diameter ratios (L/D) and Reynolds numbers at specific ε = 0.3. 

 

Figure 4.21: Non-dimensional Tangential and Radial Force with respect to Length 

to Diameter Ratio 

It is seen that tangential force magnitude increases with length to diameter ratio 

increase and radial force increases except for Re=0 case with length to diameter ratio 

increase. For Re=0 case, radial force magnitude increases in the negative direction. 

It can be concluded that increasing the L/D ratio increases damping capacity, and a 

higher Reynolds number gives higher damping capacity. A Higher L/D ratio gives a 

higher stiffening effect. Note that these changes affect how much damping capacity 

and stiffening effect is case dependent and can be clearly seen from the nonlinear 

vibration frequency response, which will be given in the following section. As it is 
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only for ε = 0.3 case, it can be assessed with Figure 4.19 and Figure 4.20 for different 

eccentricity ratio cases. 

4.3.2 Neural Network Study for SFD 

A Neural Network study is performed to obtain nonlinear generated non-dimensional 

radial and tangential forces due to SFD with 27000 data sets. Input and output 

parameters are given in Table 2.2. The selection of input data is a vital process to 

represent outputs accurately. Therefore, an input data sensitivity study is performed 

by generating plenty of figures like Figure 4.19, Figure 4.20, and Figure 4.21. It can 

be summarized that data increment is smaller for eccentricity ratio is higher than 0.4 

because the outputs, i.e., radial and tangential forces, change drastically. A similar 

approach is applied to L/D ratio. Outputs changes more for L/D ratio is higher than 

0.3. It is observed that output changes show nearly linear behavior with the changes 

in Reynolds number. Therefore, Reynolds number increment is taken as linear in the 

range. 

After defining the adequate number of the input set, non-dimensional radial and 

tangential forces are solved for these input sets by using the FDM described before. 

Obtaining the output data set takes around a 1-day run time.  

Two different networks are studied and described in Table 2.2. They are compared 

in the aspect of nonlinear vibration response. The nonlinear vibration responses of 

FDM, network with two hidden layers, and network with three hidden layers are 

given in Figure 4.22, and Figure 4.23 for the case that 0.36 g-mm and 0.79 g-mm 

unbalance is applied at disk 1 (node 4) and nonlinear response is at the same location 

disk 1 (node 4). 

It is observed that the three hidden layer network agrees well with the FDM result 

for both cases. The maximum difference in amplitude between 3 hidden layer 

network and FDM is %0.05 for 0.36 g-mm case and %0.1 for 0.79 g-mm cases. 2 

hidden layer network shows close results with FDM except for peak locations. In the 

peak locations, 2 hidden layer network gives different amplitude with a slight 
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difference and different peak frequency. The maximum difference in amplitude 

between 2 hidden layer network and FDM is %2 for 0.36 g-mm case and %0.8 for 

0.79 g-mm cases. Furthermore, the maximum difference in peak amplitude frequency 

between 2 hidden layer network and FDM is %3 for 0.79 g-mm case. 3 hidden layer 

networks show very close results for all frequency regions for the given cases. 

Although the training computational time required for 3 hidden layers network is 

three times larger than 2 hidden layer network, training time is not very high given 

in Table 2.3, and considerable accuracy improvement is observed in a network with 

3 hidden layers. Therefore, the network with 3 hidden layers is chosen for further 

comparisons and responses.  

The computational time for obtaining nonlinear vibration responses is shown in 

Figure 4.22 and Figure 4.23 for FDM and Neural Network (NN) solutions in Table 

4.4. 

 

Table 4.4: Computational time comparison of FDM and NNs 

Cases Method Computational time (s) 

0.36 g-mm  

FDM 5278 (%100) 

NN with 2 hidden layers 56 (%1.05) 

NN with 3 hidden layers 74(%1.4) 

0.79 g-mm  

FDM 8624 (%100) 

NN with 2 hidden layers 84 (%0.9) 

NN with 3 hidden layers 101(%1.1) 
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Figure 4.22: Nonlinear vibration responses of FDM and NNs 0.36 g-mm unbalance 

excitation at disk 1 

 

Figure 4.23: Nonlinear vibration responses of FDM and NNs for 0.79 g-mm 

unbalance excitation at disk 1 
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Usage of Neural Network significantly reduces computational time with respect to 

FDM. Although the analytical solution of SFD is applicable L/D ratio is smaller than 

0.25, the FDM solution of pressure distribution is still significantly beneficial for the 

inclusion of fluid inertia effect and a more accurate solution. Regarding 

computational time, FDM requires much more time, so network usage has huge 

advantages in computational time with respect to FDM solution and gives good 

accuracy. A comparison of a network with 2 hidden layers and 3 hidden layers shows 

no significant shift in computational time, so a more accurate network with 3 hidden 

layers network can be used for further studies. 

4.3.3 Nonlinear Vibration Responses Comparison between FDM and 

Neural Network 

Non-dimensional input parameters for Neural Network (ε, L/D, and Re) effects are 

investigated on nonlinear vibration responses for the rotor dynamic system described 

in the previous sections.  

0.5 gr-mm unbalance is applied at disk 1, and nonlinear responses at disk 1 are shown 

in Figure 4.24 for different L/D ratios. In the base case, L/D ratio is equal to 0.25.  

 

Figure 4.24: Nonlinear vibration responses at disk 1 for different L/D ratio 
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Nonlinear vibration responses are obtained for L/D = 0.1, 0.2, 0.25, 0.5, 0.75 and 1. 

As L/D ratio decreases from 0.25 to 0.1, damping capacity decreases, and the 

stiffening effect is observed. The jump phenomenon is seen for L/D = 0.1 case and 

the amplitude of vibration increases. As L/D ratio increases from 0.25 to 1, damping 

capacity increases more, and amplitudes get smaller. The peak response frequency 

is shifting right with the increase of L/D ratio from 0.25 to 1. These are expected 

from the investigation of radial and tangential force changes with respect to L/D 

ratio. Furthermore, Neural Network (NN) shows close agreement with FDM for all 

L/D ratios. For L/D = 0.1 case, NN and FDM show a small difference in peak 

amplitude and peak amplitude frequency for the 2nd mode. As the good agreement is 

observed for all frequency sweeps except peak locations, it is most probably caused 

that NN simulation shows differences for high eccentricity ratio, which is highly 

nonlinear region in the aspect of generated radial and tangential forces.   

0.79 gr-mm unbalance is applied at disk 1, and nonlinear responses at disk 1 are 

shown in Figure 4.25 for different Reynolds numbers. Note that base case Re is 

around 5 for the range of frequency interest. Nonlinear vibration responses are 

obtained for Re=0,5,10 and 15. First of all, it is observed that the fluid inertia effect 

is important, especially for high Reynolds number values in nonlinear responses. As 

Reynolds number increases, damping capacity increases, and vibration amplitude is 

reduced. While Reynolds number decreases, damping capacity is reduced, which 

yields higher amplitudes and higher radial force is generated, then a stiffening effect 

occurs. The peak amplitude frequency shifts towards the right when the Reynolds 

number decreases. Furthermore, it is observed that NN simulation gives good 

agreement with FDM for different Reynolds numbers.  
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Figure 4.25: Nonlinear vibration responses at disk 1 for different Reynolds Number 

4.3.4 Nonlinear Vibration Responses for effects of operation parameters 

The amount of unbalance loading and viscosity can be changed in the operation of 

the rotor-bearing system. The amount of unbalance is affected by wear and the event 

of a compressor or turbine blade break. Viscosity is changed with the change of 

temperature of working fluid in SFD. Therefore, their changes should be taken into 

account in design processes. The amount of unbalance loading and viscosity of SFD 

oil effects on nonlinear vibration response are investigated using a Neural Network 

simulation model for SFD.  

Normalized nonlinear vibration responses at disk 1 are shown in Figure 4.26 for a 

different amount of unbalance applied at disk 1. Note that the base case unbalance 

amount is 0.36 gr-mm.  

Nonlinear vibration responses are obtained for U = 0.18 gr-mm, 0.36 gr-mm, 0.54 

gr-mm, 0.72 gr-mm, 0.9 gr-mm and without SFD case i.e., normalized linear 

vibration response. First of all, SFD gives a high amount of attenuation to vibration 

responses. Although absolute vibration amplitude increases for a higher amount of 

unbalance, normalized nonlinear responses decrease, which is caused by the that 
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higher unbalance generates a high eccentricity ratio and gives more damping 

capability. Furthermore, peak amplitude frequency shifts towards the right for both 

modes as the amount of unbalance gets higher. At %250 unbalance case, nonlinear 

vibration response shows high nonlinearity and jump phenomenon probability for 

2nd mode. As a higher eccentricity ratio occurs for a higher amount of unbalance, 

generated radial force increases, and the stiffening effect increases. 

 

Figure 4.26: Normalized Nonlinear vibration responses for a different amount of 

unbalance loadings 

0.79 gr-mm unbalance is applied at disk 1, and nonlinear vibration responses at disk 

1 are shown in Figure 4.27 for different viscosity values. Oil viscosity can be 

changed during operation due to increased temperature. For example, a 20 K increase 

in oil temperature leads to a three times lower viscosity, and an 80 K increase in oil 

temperature leads to a ten times lower viscosity [40]. Therefore, change of viscosity 

value should be investigated for nonlinear vibration response. Note that the base case 

viscosity value is 5 centipoise. Nonlinear vibration responses are obtained for µ = 

1.25, 2.5, 5, 7.5 and 15 centipoise. Higher viscosity values give higher attenuation 

on nonlinear vibration responses as expected; however, it may not be available for 
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higher operating temperatures. As viscosity increases from 2.5 centipoise to 15 

centipoise, nonlinear vibration responses decrease, peak amplitude frequency shifts 

towards the right, and the stiffening effect is observed. Vibration amplitude increases 

as viscosity decreases from 2.5 to 1.25 centipoise, and peak amplitude frequency 

shifts towards the right, which is a stiffening effect. Nonlinearity becomes larger for 

lower viscosity values, especially when viscosity equals 1.25 centipoise. The jump 

phenomenon probably gets higher for 1st and 2nd modes.  

 

Figure 4.27: Nonlinear Vibration responses for different viscosity values 
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CHAPTER 5  

5 CONCLUSION 

In this thesis, nonlinear vibration of rotor-bearing system supported by Squeeze Film 

Damper (SFD) is presented. The Linear Rotor-bearing system model is developed 

by 1-D Timoshenko beam elements.  

Firstly, the solution of the 1D Reynolds equation of SFD is utilized to model SFD. 

The theoretical background of the rotordynamic model, nonlinear short-length 

squeeze film damper model, and solution procedure is presented. A small turbojet 

engine available in the literature [27] is considered as a case study. A single SFD is 

connected to the system close to the first lumped masses. Effects of cavitation type 

in SFD lubricant, fluid inertia contribution, geometrical dimensions such as 

diameter, length, and clearance of the SFD, the amount of unbalance, and its location 

on the nonlinear response are presented. Results show that the nonlinear forced 

response of the rotor-bearing system highly depends on the parameters of the SFD, 

especially the clearance and the length of the SFD, and the journal's dynamic motion, 

which directly depends on the amount of unbalance and its location. 

Secondly, the SFD model is developed with a 3D Reynolds equation solution using 

FDM, including oil inertia effects. Oil pressure distribution for viscous only (zeroth 

order) and inertial (first order) terms are solved by means of FDM for open-ended 

SFD by assuming CCO motion type. The nonlinear forces generated by SFD is 

obtained by integrating oil film pressure distribution over the journal surface. A 

Neural Network study is performed to model SFD to get a fast and accurate 

simulation model for SFD. Three non-dimensional inputs (ε, L/D, and Re) are 

necessary and sufficient in order to get non-dimensional radial and tangential forces 

outputs generated by SFD. A neural network simulation model is established and 

compared with the FDM solution of SFD nonlinear forces. Dynamic forces acting 

on SFD cause nonlinear forcing exerted on the rotor-bearing system. Therefore, the 
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rotor-bearing system and SFD coupling model is established. Nonlinear forces, 

including differential equations, are converted into a set of algebraic equations with 

HBM, and nonlinear equations are solved by Newton's method with arc-length 

continuation. 

A numerical case study is performed. Oil pressure distribution and generated forces 

are presented for input parameters (ε, L/D and Re) of the Neural Network. 2 different 

networks are studied and compared. A network 3 hidden layer gives better accuracy 

while slightly increasing computational time. Nonlinear vibration responses are 

compared for the FDM solution of SFD and the Neural Network solution of SFD. 

The followings are observed that  

 

-      Neural Network (NN) solution agrees with the FDM solution SFD in nonlinear 

vibration responses for the cases of base SFD configurations. Furthermore, NN is 

computationally much more efficient than FDM, which NN solution requires 

around %1 time of FDM solutions for studied nonlinear vibration responses.  

-     For low L/D ratio and high eccentricity ratio, NN results have a slight difference 

with the FDM solution. It can be caused that those nonlinear generated forces may 

be changed drastically at higher eccentricity ratio regions. As L/D ratio increases, 

nonlinear vibration response decreases.    

-     For different Reynolds numbers, the NN solution gives close agreement with 

FDM. Nonlinear vibration responses decrease with the increase of Reynolds 

number because an increase of Reynolds number increases tangential force and 

damping capacity. Furthermore, it is seen that the Reynolds number is getting 

higher, and the effect of fluid inertia is getting significantly considerable for 

nonlinear vibration responses. 

-      Some parameters that can easily change the operating system, such as the 

amount of unbalance loading and viscosity effects, are investigated on nonlinear 

vibration responses. It is seen that the normalized response decreases, and 

nonlinearity becomes higher with the increase in the amount of unbalance 

loadings. While having higher viscosity increases the damping capacity, it shifts 
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the peak amplitude frequency towards right and for low viscosity values, 

nonlinearity becomes more significant, and amplitude increases.  

 

The proposed methods provide fast and accurate modeling and nonlinear vibration 

response simulation. Especially for the design and analysis process for the rotor-

bearing system supported by SFD, the Neural network solution of SFD has huge 

advantages in computational time and gives good accuracy.   
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